ΓΟCT 26266-90

Группа П18

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Контроль неразрушающий

ПРЕОБРАЗОВАТЕЛИ УЛЬТРАЗВУКОВЫЕ

Общие технические требования

Non-destructive testing.
Ultrasonic transducers.
General technical requirements

ОКП 42 7619

Срок действия с 01.01.91 до 01.01.96*

Ограничение срока действия снято по протоколу N 5-94
 Межгосударственного Совета по стандартизации, метрологии и сертификации. (ИУС N 11-12 1994 г.).

 Примечание "КОДЕКС"

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности и приборостроения СССР

РАЗРАБОТЧИКИ

Л.М.Кушкулей (руководитель темы), канд. физ.-мат. наук; Б.Л.Зайцев

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.02.90 N 282
 - 3. СРОК ПЕРВОЙ ПРОВЕРКИ 1993 г.:

ПЕРИОДИЧНОСТЬ ПРОВЕРКИ - 5 лет

4. B3AMFH FOCT 26266-84

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, приложения
ΓΟCT 12.1.001-89	2.12
ΓΟCT 16465-70	Приложение 1
ГОСТ 20415-82	Приложение 4
ГОСТ 22269-76	2.8.3
FOCT 23829-85	Приложение 1

6. ПЕРЕИЗДАНИЕ (август 1991 г.)

Настоящий стандарт распространяется на ультразвуковые пьезоэлектрические преобразователи (далее - ПЭП), имеющие рабочую область частот в диапазоне от 0,16 до 30 МГц и предназначенные для работы в составе ультразвуковых приборов неразрушающего контроля (далее - УПНК) при эхо- и теневом методах контроля с помощью объемных (продольных и сдвиговых) ультразвуковых волн.

Стандарт не распространяется на ПЭП с коэффициентом преобразования **Кит** менее минус 60 дБ или с импульсным коэффициентом преобразования **Кит** менее минус 80 дБ, на ПЭП, предназначенные для контроля физико-механических свойств материалов и изделий, а также на ПЭП, изготовляемые как нестандартизованные средства измерений по ГОСТ 8.326-78.

Термины, применяемые в настоящем стандарте, и пояснения к ним приведены в приложении 1.

1. КЛАССИФИКАЦИЯ

1.1. По отношению к объекту контроля ПЭП подразделяют на: ПЭП общего назначения;

специализированные ПЭП

по способу осуществления акустического контакта ПЭП подразделяют на:

контактные;

иммерсионные;
контактно-иммерсионные;
бесконтактные.
по направлению ввода упругих колебаний в исследуемый объект ПЭП подразделяют а:
прямые;
наклонные;
комбинированные
по конструктивному исполнению ПЭП подразделяют на:
совмещенные;
раздельно-совмещенные;
раздельные
по форме рабочей поверхности ПЭП подразделяют на:
плоские;
неплоские
по расхождению акустического пучка ПЭП подразделяют на:
фокусирующие;
нефокусирующие.
1.2. Тип ПЭП определяют сочетанием перечисленных в п. 1.1 признаков.

Каждому типу ПЭП соответствует условное обозначение, структура которого приведена в приложении 2.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. ПЭП должны быть изготовлены в соответствии с требованиями настоящего стандарта и технических условий на ПЭП конкретного типа по рабочим чертежам, утвержденным в установленном порядке.
 - 2.2. Основные показатели ПЭП общего назначения приведены в табл. 1.

Наименование показателя	Значение пог	Значение показателя для дефектоскопов группы									
	1	2	3								
Отклонение эффективной частоты эхоимпульса $f_{\mathbf{j}}$ и (или) частоты	± 10 (20)	± 10 (20)	± 10								
максимума преобразования $f_{\mu\nu}$ от номинального значения, %, не более											
Отклонение угла ввода α и (или) α' в сталь 45 от номинального значения, не более, для угла ввода:											
до 60°	± 3 (5)°	± 1,5 (2)°	± 1,5°								
свыше и равного 60°	± 3 (5)°	± 2 (3)°	± 2°								
Отклонение точки ввода от номинального значения (для П121), мм, не более	-	± 1 (2)	± 1								

Примечания:

- 1. Значение в скобках допускается устанавливать по требованию заказчика.
- 2. Конкретные значения отклонения точки ввода для ПЭП, предназначенных для работы с дефектоскопами первой группы, устанавливают в технических условиях на ПЭП конкретного типа.
- 3. Для ПЭП, имеющих несколько частот и (или) углов ввода, требования могут распространяться на одну из номинальных частот и (или) углов ввода, установленных в технических условиях на ПЭП конкретного типа.
- 2.3. Отклонения частот f_{mr} , f_{s} от номинальных значений следует выбирать из ряда: \pm (1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0) %, по требованию потребителя \pm (15,0; 20,0)%.
- 2.4. Отклонения коэффициента преобразования K_{mr} , K_{mr}^{m} от номинального значения следует выбирать из ряда: ± (2,0; 4,0; 6,0; 8,0; 10,0; 12,0; 14,0) дБ.

Допускается устанавливать K_{mr} , K_{mr}^{*} в виде минимальных значений.

- 2.5. Отклонения угла ввода $\underline{\alpha}$ ($\underline{\alpha}'$) от номинального значения для ПЭП с частотой $\underline{f}_{\mathfrak{p}\mathfrak{p}}$ ($\underline{f}_{\mathfrak{z}}$) \ge 1 МГц следует выбирать из ряда: \pm (1,0; 1,5; 2,0; 2,5; 3,0)°, по требованию потребителя \pm (4,0; 5,0)°.
- 2.6. Отклонения положения точки ввода следует выбирать из ряда: \pm (0,5; 1,0) мм, по требованию потребителя \pm (1,5; 2,0; 3,0; 4,0) мм.
- 2.7. Требования к остальным показателям, приведенным в приложении 3, устанавливают в технических условиях на ПЭП конкретного типа.
 - 2.8. Требования к конструкции
- 2.8.2. На ПЭП, предназначенные для ручного контроля, должна быть нанесена маркировка согласно приложению 2.

Маркировка и покрытие ПЭП должны быть стойкими к износу и воздействию контактных жидкостей.

- 2.8.3. Конструкция ПЭП совместно с УПНК должна соответствовать общим эргономическим требованиям ГОСТ 22269.
- 2.9. В технических условиях на ПЭП конкретного типа должны быть установлены размеры рабочей поверхности, габаритные размеры и масса ПЭП, и при необходимости установочные размеры и требования к базовым поверхностям и специальным маркировкам, обеспечивающим однозначную ориентацию ПЭП при измерении их параметров (характеристик).
- 2.10. Требования к устойчивости ПЭП к индустриальным радиопомехам, внешним воздействиям и электробезопасности должны соответствовать требованиям, установленным в стандартах и технических условиях на УПНК, для работы с которыми предназначен данный ПЭП.
 - 2.11. Требования к надежности
 - 2.11.1. В технических условиях на ПЭП конкретного типа устанавливают:

для восстанавливаемых ПЭП:

среднюю наработку на отказ:

средний срок службы;

среднее время восстановления работоспособного состояния;

для невосстанавливаемых ПЭП:

среднюю наработку до отказа;

средний срок службы.

Критерии отказа и предельного состояния устанавливают в технических условиях на ПЭП конкретного типа.

- 2.12. Средний уровень звукового давления или колебательная скорость, или интенсивность ультразвука в зоне контакта ПЭП с телом оператора должны соответствовать ГОСТ 12.1.001 и не должны превышать соответственно 110 дБ, $1.6\cdot10^{-2}$ м/с и 0.1 Вт/см 3 .
- 2.13. Номенклатура показателей ПЭП общего назначения, предназначенных для работы с дефектоскопами 1, 2 и 3-й групп и толщиномерами с использованием эхометода контроля, которые необходимы при разработке технических заданий и технических условий на ПЭП конкретного типа, приведена в приложении 3.
- 2.14. Номенклатура показателей ПЭП, предназначенных для работы с использованием теневого метода контроля, с дефектоскопами 4 группы, со структуроскопами, а также специализированных ПЭП, предназначенных для работы с дефектоскопами и толщиномерами, устанавливается по требованию потребителя в технических условиях на ПЭП конкретного типа из приведенных в приложении 3.

ПРИЛОЖЕНИЕ	1
Справочно	е

Отношение Лапласовых преобразований (изображений) по времени давления

(упругого напряжения) на выходе ПЭП к электрическому напряжению возбуждения на ПЭП

Отношение Лапласовых преобразований

(изображений) по времени электрического

 K_{aU}

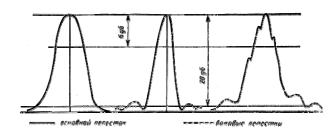
 $K_{\sigma_{\sigma}}$

ПОЯСНЕНИЯ ТЕРМИНОВ, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

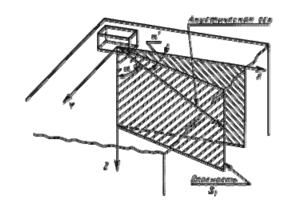
		Таблица 2			(изооражении) по времени электрического напряжения холостого хода на выходе ПЭП к давлению (упругому напряжению) на входе ПЭП
- 1	словное значение	Пояснение	Рабочая область частот	-	Область частот, в которой нормируют параметры ПЭП, устанавливаемые в стандартах или технических условиях на
Пьезоэлектрический преобразователь (ПЭП)	-	Устройство, предназначенное для преобразования электрического (акустического) сигнала в акустический (электрический), основанное на использовании пьезоэлектрического	Амплитудно- частотная характеристика	$K_{UV(UID^{\dagger}\sigma,\sigma U)}(w)$	них Зависимость модуля передаточной функции К
		эффекта и применяемое для работы в составе средств неразрушающего контроля	Частота максимума преобразования	f	Частота, соответствующая максимальному значению модуля
ПЭП общего назначения	-	ПЭП, в технических условиях на которые не установлен конкретный тип			передаточной функции Круппе (19) в рабочей области частот
		контролируемого изделия или группы изделий	Коэффициент преобразования	$K_{\sigma\sigma(v),p_{\sigma,\sigma}\sigma)}$	Значение модуля передаточной функции f
Специализированные ПЭП	-	ПЭП, в технических условиях на которые установлен конкретный тип контролируемого изделия или группы изделий	Неравномерность амплитудно- частотной характеристики	B00(V1.0+.+0)	Разность уровней наибольшего и наименьшего значения К
Передаточная функция	R _{vv}	Отношение Лапласовых преобразований (изображений) по времени электрического напряжения холостого хода эхосигнала, развиваемого ПЭП, к электрическому напряжению возбуждения ПЭП, работающего в совмещенном режиме и нагруженного на определенную акустическую нагрузку	Полоса пропускания	∆fvoças;	Максимальный интервал частот, включающий в себя Δr_{DOUD} , в котором амплитудно-частотная характеристика K_{DOUD} принимает значения на уровне не менее минус 6 дБ
	R_{vs}	Отношение Лапласовых преобразований (изображений) по времени электрического напряжения холостого хода эхосигнала, развиваемого ПЭП, к току возбуждения ПЭП, работающего в совмещенном режиме и нагруженного на определенную акустическую нагрузку		Δ _{1να(αν)}	Максимальный интервал частот, включающий в себя $\Delta_{V_{\bullet}(\bullet V)}$, в котором амплитудно-частотная характеристика $K_{V_{\bullet}(\bullet V)}(\bullet V)$ принимает значения на уровне не менее минус 3 дБ

Электрический импеданс		Зависимость от частоты комплексного электрического сопротивления ПЭП, нагруженного на определенную акустическую нагрузку	(эхоимпульс)		функции времени, развиваемое ПЭП, нагруженным акустически на нормированную нагрузку, а электрически - на УПНК
Электрическое сопротивление	$Z_{m_{\lambda}}(\boldsymbol{\omega})$ $Z_{m_{\lambda}}^{c}(\boldsymbol{\omega})$	Абсолютное значение электрического импеданса ПЭП Электрическое сопротивление ненагруженного ПЭП	Мгновенные значения эхоимпульса	$ar{U}_{f_{ au}}^{*(-)}$	Значения эхоимпульса от отражателя, находящегося на расстоянии z_{v} ($v=1, 2, 3$) от ПЭП в диапазоне контроля или измеряемых толщин в точке j -го
	$Z_{\mathbf{n}}^{\mathbf{n}}(\boldsymbol{\omega})$ $Z_{\mathbf{n}}^{\mathbf{p}(\mathbf{q})}$	Электрическое сопротивление ПЭП, нагруженного на определенную акустическую нагрузку Электрическое сопротивление преобразователя в точке экстремума, соответствующего минимуму (максимуму)	Временные интервалы эхоимпульса Длительность эхоимпульса	Ĩ;+(-) Ĩ _{mas}	максимума (минимума) (черт. 1) Временные интервалы между нулевыми и экстремальными значениями эхоимпульса (черт. 1) Временной интервал между началом фронта эхоимпульса и его максимальным
Импульсная характеристика		зависимости Z _{вз} (a) от частоты Электрическое напряжение эхосигнала в функции времени, развиваемое ПЭП, нагруженным электрически на активное сопротивление 50 Ом и акустически на определенную акустическую нагрузку, при возбуждении ПЭП импульсом тока экспоненциальной формы по ГОСТ 16465	Эффективная частота эхоимпульса	T_H f_2	значением (черт. 1) Длительность эхоимпульса на уровне М дБ от максимального значения (черт. 1) Частота эхоимпульса, определяемая как отношение числа полупериодов к удвоенной общей длительности этих полупериодов в пределах длительности эхоимпульсов
Импульсный коэффициент преобразования Мгновенное значение импульсной характеристики	(j = 1, 2, 3)	Отношение максимального значения импульсной характеристики к максимальному значению тока возбуждения ПЭП Значения импульсной характеристики в точках ј -го максимума (минимума) (черт. 1)	Импульсный коэффициент преобразования	K.	Отношение максимального значения амплитуды (размаха) электрического напряжения эхоимпульса к максимальному значению амплитуды (размаха) электрического напряжения возбуждения ПЭП, нагруженного на определенную акустическую нагрузку
Временной интервал импульсной характеристики	(j =1, 2, 3, 12)	Временной интервал между нулевым и экстремальным значением импульсной характеристики (черт. 1)	АРД-диаграмма Функция эхосигнала от дна	АРД Д(≇)	По ГОСТ 23829 Зависимость амплитуды донного сигнала от расстояния <i>z</i> до дна
Длительность импульсной характеристики	Laure	Временной интервал между началом фронта импульсной характеристики и ее максимальным значением (черт. 1)	Функция эхосигнала от дефекта	C(s)	Зависимость амплитуды эхосигнала от расстояния г до искусственного отражателя определенной формы и размера
Форма эхоимпульса	£39	Длительность импульсной характеристики на уровне минус № дБ от максимального значения (черт. 1) Электрическое напряжение эхо-сигнала в	Диапазон контроля	-	Интервал, ограниченный минимальной и максимальной глубинами залегания отражателей с постоянным значением эффективного параметра, в котором

		нормируется отношение сигнал/шум	(кривизны)		изменений шероховатости (кривизны) поверхности контролируемого изделия в
Уровень эхосигнала	C_{1}, C_{2}, C_{3}	Значения функции С(г) в точках г.			пределах условий эксплуатации
от дефекта		(№ =1, 2, 3), находящихся в диапазоне контроля	Функция влияния акустического контроля	$\Phi_{\mathbf{k}}$	Зависимость отношения сигнал/шум или мгновенного значения эхоимпульса от изменений акустического контакта ПЭП с
Шум (помехи) преобразователя		Электрическое напряжение на ПЭП, обусловленное воздействием на него импульса генератора и флуктуационными			контролируемым изделием в пределах рабочих условий эксплуатации
		шумами, возникающими в ПЭП и его электрической и акустической нагрузках при сигнале помехи от внешних источников, не превышающем установленного значения, и при	Функция влияния температуры	$\Phi_{\mathbf{r}}$	Зависимость отношения сигнал/шум или мгновенного значения эхоимпульса или угла ввода с от изменений температуры контролируемого изделия и (или) температуры окружающей среды
		отсутствии полезного сигнала (эхоимпульса от определенного отражателя)	Диаграмма направленности ПЭП (совмещенный	-	Нормированный по максимуму график зависимости эхосигнала на ПЭП от определенного отражателя.
Функция шумов	<i>A(з</i>) или <i>A(г</i>)	Временная зависимость отношения шума ПЭП к значению амплитуды электрического напряжения эхоимпульса от определенного отражателя, измеренная при нормированных параметрах акустической и электрической	режим)		расположенного в акустической нагрузке ПЭП в зависимости от координаты, характеризующей их взаимное перемещение в определенной плоскости по определенной траектории
		нагрузок ПЭП при отсчете времени от начала фронта импульса возбуждения (где $\tau = 2$? ι - скорость распространения ультразвуковых колебаний)	Акустическая ось	-	Геометрическое место точек максимальной интенсивности звукового поля в дальней зоне ПЭП и его геометрическое продолжение в ближней зоне
Длительность шумов	$ au_A$	Временной интервал, в котором значение А(т) превышает заданный уровень	Диаграмма направленности	P_1	Диаграмма направленности преобразователя, измеренная в плоскости S_1 , перпендикулярной к рабочей
Уровень шумов	A_{ω}	Наибольшее значение А(т) в заданном временном интервале △т			поверхности преобразователя и проходящей через его акустическую ось, при перемещении отражателя по дуге окружности или по прямой
	$A_{\!\scriptscriptstyle{c}}$	Значение Д(т) в заданный момент времени τ	Диаграмма направленности	P_2	Диаграмма направленности преобразователя, измеренная в плоскости
Отношение сигнал/шум	A_{o}	Наименьшее отношение электрического напряжения эхоимпульса от определенного отражателя на ПЭП к шуму в ПЭП, взятое в определенной точке — (или т) диапазона контроля или измеряемых толщин			\mathcal{S}_2 , перпендикулярной к плоскости \mathcal{S}_1 и проходящей через акустическую ось преобразователя, при перемещении отражателя по дуге окружности или по прямой
Функция влияния шероховатости	$\Phi_{\mathrm{maje}_{i}}$	Зависимость отношения сигнал/шум или мгновенного значения эхоимпульса от	Ширина диаграммы направленности	Θ_1	Размер диаграммы направленности P_1 на уровне минус 6 дБ

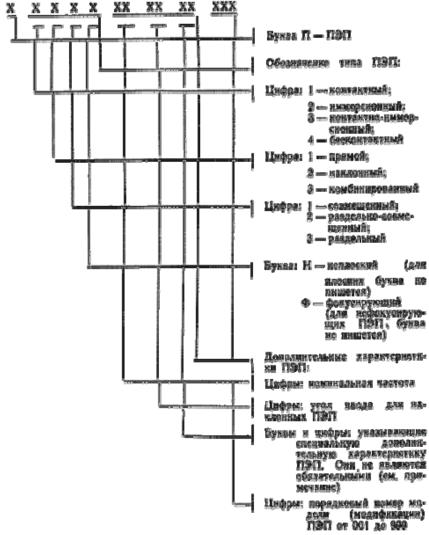

		1
	Θ,	Размер диаграммы направленности $P_{_2}$ на уровне минус 6 дБ
Основной лепесток диаграммы направленности		Область диаграммы направленности, включающая в себя максимум и ограниченная ближайшими к нему нулями или достаточно глубокими минимумами (черт. 2)
Угол ввода	α	Угол между нормалью к поверхности, на которой установлен преобразователь, и его акустической осью, измеренный в плоскости $\mathcal{S}_{\mathbb{I}}$ (черт. 3)
	α'	Меньший из углов между плоскостью S_1 и плоскостью, перпендикулярной к рабочей поверхности ПЭП и проходящей через его геометрический центр и определенную метку на корпусе или параллельно боковой стороне (черт. 3)
Стрела ПЭП	l	Расстояние от точки ввода наклонного ПЭП до его передней грани, измеренное вдоль линии пересечения плоскости S_1 с рабочей поверхностью ПЭП
Фокусное расстояние	F	Расстояние от геометрического центра рабочей поверхности фокусирующего ПЭП до точки, в которой звуковое давление, создаваемое им, максимально
Протяженность фокальной области	Ž3	Размеры области перемещения определенного отражателя по акустической оси, на границах которой эхосигнал принимает значения на уровне минус 6 дБ
	Z ₃	Ширина диаграммы направленности 6 , измеренная вдоль линии пересечения фокальной плоскости с плоскостью 5
	\mathcal{X}_1	Ширина диаграммы направленности $m{\theta}_1$, измеренная вдоль линии пересечения фокальной плоскости с плоскостью $m{\Sigma}_1$

Точка ввода		Точка пересечения акустической оси ПЭП с поверхностью среды, контактирующей с рабочей поверхностью ПЭП
Акустическая нагрузка		Среда (жидкая, газообразная) или специальное устройство, с которыми находится в контакте рабочая поверхность ПЭП при измерении его характеристик, обладающие определенными акустическими и геометрическими параметрами
Уровень боковых лепестков (бокового излучения)	N_{a}	Максимальный уровень диаграммы направленности за пределами основного лепестка
Время распространения звука в призме (акустической задержке)	T _{TO}	Время задержки сигнала от момента подачи электрического импульса на ПЭП до момента появления акустического сигнала в точке ввода


B cayage analysisches xasanaeguemunu $A^{f(-)}$ and $A^{f(-)}$; $F_1 = F_1^{f(-)}$; $f = f_2^{f(-)}$;

Примеры определения основного лепестка диаграммы направленности

Черт. 1



Черт. 2

Черт. 3

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ПЭП

1. Пример условного обозначения ПЭП контактного, наклонного, совмещенного, номинальной частотой 2,5 МГц, углом ввода 35°, порядковым номером модели 001:

Примечание. Примеры условного обозначения специальной дополнительной характеристики ПЭП: T120 - максимальная температура контролируемого объекта - 120 °C; КН - керамическая защита, нормальное исполнение корпуса; ММ - миниатюрное исполнение корпуса.

1,8 МГц <
$$f_{WV}(f_*)$$
 ≤3,0 МГц - синий, фиолетовый;

- 3. В условных обозначениях ПЭП с переменными углом ввода и (или) частотой или имеющих несколько номинальных частот и (или) углов ввода, вместо номинальных значений этих параметров указывают граничные значения диапазона их изменений.
- 4. Для ПЭП с переменной частотой или имеющих несколько номинальных частот цвет маркировки должен соответствовать наибольшей из частот.
- 5. При недостатке места допускается на ПЭП конкретного типа приводить сокращенную маркировку, форма которой устанавливается в технических условиях на ПЭП.

ПРИЛОЖЕНИЕ 3 Обязательное

НОМЕНКЛАТУРА ОСНОВНЫХ ПОКАЗАТЕЛЕЙ, УСТАНАВЛИВАЕМЫХ ПРИ РАЗРАБОТКЕ ТЕХНИЧЕСКОГО ЗАДАНИЯ И ТЕХНИЧЕСКИХ УСЛОВИЙ НА ПЭП КОНКРЕТНОГО ТИПА

Таблица 3

	Применяемость в НТД													
Наименование	T3	ТУ	T3	ТУ	T3	ТУ	T3	ТУ	T3	ТУ	T3	ТУ		
показателя	на		на		на		на		на		на			
	OKP		ОКР		OKP		OKP		OKP		OKP			
	Д	ля де	фектосі	копов	группы		L	Іля то	лщиног		с ПЭП			
	1		2		3		П11	12	П211 П11		П1	11		
	'				3		111	12	акус		П111			
									чес					
									задер					
1. ПОКАЗАТЕЛИ НАЗНАЧЕНИЯ														
Коэффициент преобразования:														
К _{рр} и (или) К _{рг}	+	+	+	+	+	+	±	±	+	+	+	+		
$K_{v_{\sigma}}$ $K_{\sigma \sigma}$	-	-	-	-	-	-	-	-	-	-	-	-		
K_{eU}	-	-	-	-	-	-	-	-	-	-	-	-		
Отклонение коэффициента преобразования Кругол от номинального	+	+	+	+	+	+	±	±	±	±	±	±		
значения Амплитудно-частотная														
характеристика														
$K_{UU(DI)}(\varpi)$	±	±	±	±	±	±	±	±	±	±	±	±		
Частота максимума преобразования:														
<i>f_{uu}</i> и (или) <i>f_{ui}</i>	+	+	+	+	+	+	±	±	±	±	±	+		

f_{0s}	-	-	-	-	-	-	-	-	-	-	-	-	a'	±	±	±	±	±	±	±	±	±	±	±	±
fou	-	-	-	-	-	-	-	-	-	-	-	-	Ширина диаграммы направленности:												
Отклонение частоты максимума													$\theta_{\scriptscriptstyle 1}$	+	+	+	+	+	+	-	-	-	-	-	-
преобразования от номинального													θ_2	±	±	±	±	±	±	-	-	-	-	-	-
значения:													Фокусное расстояние F	±	±	±	±	±	±	±	±	±	±	±	±
<i>∫₀₀</i> и (или) <i>∫₀₂</i>	+	+	+	+	+	+	±	±	±	±	±	±	Протяженность												
100	-	-	-	-	-	-	-	-	-	-	-	-	фокальной области:												
Jou	-	-	-	-	-	-	-	-	-	-	-	-	X1(2)	±	±	±	±	±	±	-	-	-	-	-	-
Полоса пропускания:													₹ 3	±	±	±	±	±	±	±	±	±	±	±	±
∆ј и (или) Дј	+	+	+	+	+	+	±	±	±	±	±	±	Уровень боковых	±	±	±	±	±	±	_	_	_	-	_	-
													лепестков 🚺												
△J _{Ve}	-	-	-	-	-	-	-	-	-	-	-	-	Отклонение точки	±	±	±	±	±	±	-	-	-	-	-	-
∆f _{elf}	-	-	-	-	-	-	-	-	-	-	-	-	ввода М	±	±	±	±	±	±		_	_	-	_	
Граничные частоты полосы пропускания													Стрела ПЭП /							-					-
$f_{\mathbf{H}}$, $f_{\mathbf{E}}$	±	±	±	±	±	±	±	±	±	±	±	±	Время распространения звука в призме (акустической	±	±	±	±	±	±	±	±	±	±	-	-
Неравномерность													задержке) Тт												
амплитудно-частотной характеристики:													Электрическое	-	-	-	-	-	-	-	-	-	-	-	-
$\beta_{vv(vi)}$	±	±	±	±	±	±	±	±	±	±	±	±	сопротивление $Z_{n_3}^{*d(c)}(\omega)$												
$\beta_{V\sigma(\sigma U)}$	-	-	-	-	-	-	-	-	-	-	-	-	Электрическое	_	-	_	_	_	_	_	_	_	-	_	_
Угол ввода: •	+	+	+	+	+	+	±	±	±	±	±	±	сопротивление $Z_{n_3}^{p_m}(Z_{n_3}^{a_m})$												
α [']	±	±	±	±	±	±	±	±	±	±	±	±	Импульсный	±	±	±	±	±	±	±	±	±	±	±	±
Отклонение угла ввода		_	_	-	-		-	_	-		_	_	коэффициент	<u> </u>	-	<u>*</u>	-	-	_	<u> </u>	_	-	_	<u> </u>	_
от номинального значения:													преобразования 🕷												
α	+	+	+	+	+	+	±	±	±	±	±	±	Мгновенное значение импульсной характеристики	-	-	-	-	-	-	-	-	-	-	-	-

$U_j^{\bullet(-)}$ ($j = 1, 2, 3$)													Импульсный коэффициент	-	-	-	-	-
Временной интервал импульсной	-	-	-	-	-	-	-	-	-	-	-	-	преобразования 🧗					
характеристики (_j = 1, 2, 3, 12)													Мгновенное значение эхоимпульса (№ = 1, 2, 3):					
Длительность импульсной характеристики	-	-	-	-	-	-	-	-	-	-	-	-	$\bar{\mathcal{Q}}_{k}^{*(-)}$	-	-	-	-	-
ž _{mac} H)													Ũ ^{*(−)}	-	-	-	-	-
АРД-диаграмма	-	-	±	±	±	±	-	-	-	-	-	-	$\mathcal{D}_{b}^{(q)-1}$	-	-	-	-	-
Функция шумов $m{A}(z)$	±	±	±	±	±	±	-	-	-	-	-	-	- 10					
$(A(\tau))$													Отклонение мгновенных значений	-	-	-	-	-
Длительность шумов	±	±	±	±	±	±	-	-	-	-	-	-	эхоимпульса 👣 от					
τ_A													номинального значения					
Уровень шумов в точке (диапазоне) $m{A}_{\!$	±	±	±	±	±	±	-	-	-	-	-	-	Длительность эхоимпульса:					
Функция эхосигнала от	_	_	±	±	±	±	_	_	_	_	_	_	T _{men}	-	-	±	±	±
дефекта С(2)			_		-	_							T _M	-	-	±	±	±
Уровень эхосигнала от	±	±	±	±	±	±	-	-	-	-	-	-	Od dout up upg upgrate					
дефекта $C_{1(23)}$													Эффективная частота эхоимпульса 🚜	±	±	±	±	±
Функция эхосигнала от дна $D(z)$	±	±	±	±	±	±	-	-	-	-	-	-	Временной интервал эхоимпульса:					
Отношение сигнал/шум	±	±	±	±	±	±	+	+	+	+	+	+						
A_c													<u>Z</u> •(-)	-	-	-	-	-
Функция влияния:													Z=(-)	-	-	-	-	-
_	_	±	±	±	_	_	_	±	±	±	±	±	Z(*(-)	-	-	-	-	-
шероховатости 🗣	I	I	I	1	I	Ι Τ	I	Ι Τ	I	Ι.	I		7-(-)	-	-	-	-	-
Кривизна Ф_	±	±	±	±	±	±	±	±	±	±	±	±	Отклонение	±	±	_	±	_
акустического контакта	±	±	±	±	±	±	±	±	±	±	±	±	эффективной частота	Ξ.	T	±	T	±
$\Phi_{\mathbf{t}}$													эхоимпульса f_{γ} от					
Температуры Ф_	±	±	±	±	±	±	±	±	±	±	±	±	номинального значения 2. ПОКАЗАТЕЛИ					

1	l	1 1		1 1		1 1		1 1		l i		l I	
Импульсный коэффициент	-	-	-	-	-	-	+	+	±	±	±	±	
преобразования 🤾 📆													
Мгновенное значение эхоимпульса (№ = 1, 2, 3):													
$\overline{\mathcal{Q}}_{\mathrm{le}}^{*(-)}$	-	-	-	-	-	-	±	±	±	±	±	±	
$\widetilde{U}_{so}^{*(-)}$	-	-	-	-	-	-	±	+	±	+	±	±	
$\widetilde{U}_{bc}^{(q(-))}$	-	-	-	-	-	-	±	±	±	±	±	±	
Отклонение мгновенных значений	-	-	-	-	-	-	±	±	±	±	±	±	
эхоимпульса 👣 от													
номинального значения													
Длительность эхоимпульса:													
T _{max}	-	-	±	±	±	±	±	±	±	±	±	±	
T _N	-	-	±	±	±	±	±	±	+	+	±	±	
Эффективная частота	±	±	±	±	±	±	+	+	±	±	±	±	
эхоимпульса 🏒													
Временной интервал эхоимпульса:													
<u> </u>	-	-	-	-	-	-	±	±	±	±	±	±	
₹*(-)	-	-	-	-	-	-	±	±	±	±	±	±	
<u>Z</u> (*(-)	-	-	-	-	-	-	±	±	±	±	±	±	
7.4(-)	-	-	-	-	-	-	-	-	-	-	-	-	
Отклонение эффективной частота эхоимпульса f_{η} от номинального	±	±	±	±	±	±	±	±	±	±	±	±	
значения 2. ПОКАЗАТЕЛИ													

НАДЕЖНОСТИ												
Средняя наработка на отказ (для восстанавливаемых ПЭП)	+	+	+	+	+	+	+	+	+	+	+	+
Средняя наработка на отказ (для невосстанавливаемых ПЭП)	+	+	+	+	+	+	+	+	+	+	+	+
Средний срок службы	+	+	+	+	+	+	+	+	+	+	+	+
Среднее время восстановления работоспособного состояния (для восстанавливаемых ПЭП) 3. ПОКАЗАТЕЛИ УСТОЙЧИВОСТИ К ВНЕШНИМ ВОЗДЕЙСТВИЯМ	+	+	+	+	+	+	+	+	+	+	+	+
Устойчивость и прочность к воздействию климатических и механических факторов при эксплуатации	+	+	+	+	+	+	+	+	+	+	+	+
Устойчивость к индустриальным радиопомехам 4.ПОКАЗАТЕЛИ БЕЗОПАСНОСТИ	+	+	+	+	+	+	+	+	+	+	+	+
Средний уровень звукового давления или колебательная скорость или интенсивность ультразвука в зоне контакта ПЭП с телом оператора	+	+	+	+	+	+	+	+	+	+	+	+

Примечания

- 1. Знак "+" означает применяемость, "-" неприменяемость и " \pm " ограниченную применяемость соответствующего показателя для ПЭП общего назначения.
- 2. Для ПЭП с Δ_{LECOM} долускается не устанавливать требования к f_{LECOM} , ее отклонению от номинального значения и Δ_{LECOM} . В этом случае должно быть установлено требование к f_{LECOM} в рабочей области частот.
 - 3. Показатель 🎑 устанавливают для наклонных ПЭП.

Текст документа сверен по: официальное издание Госстандарт СССР - М.: Издательство стандартов, 1991